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Main objectives
1. establish climate data record of COS & estimate SH COS budget

2. improve understanding of processes governing background
stratospheric sulfate aerosol

i. determine relative contributions of SO2/DMS/COS in
delivering S to base of TTL under (a) low OH & (b) high OH
conditions (Fig. 1)

Outlook
� include  gas-phase chemistry of other sulfur containing compounds such as DMS, COS & CS2

� derive H2O2/OH/O3 fields from the same model (e.g. GEOS-Chem)
� consider an estimate of the atmospheric lifetime of SO�

��/H2SO4 in trajectory study
� expand sensitivity study: besides varying the OH concentrations, also consider varying the SO2 initial concentrations 

for e.g. (a) high emissions scenario (representative for typical SO2 values above land & population centres) & (b) low 
emissions scenario (representative for tropical (30oS to 30oN) average)

� question to be answered: What are the relative contributions of SO2, DMS, and COS to the overall amount of sulfur 
entering the stratosphere & how do those vary with changes in OH concentrations?

� how does the result change if we interpolate SO2 concentrations along trajectories over time & include volcanoes in 
SO2 simulations?
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Figure 2: (a) 
SO2 in % 
remaining at 
LCP for Low OH
→ ~7.9% of all 
trajectories 
deliver more 
than 2% of the 
initial SO2 to the 
stratosphere. 
The majority 
(92.1%) of the 
trajectories 
deliver less. 
Even though the 
amount of SO2

reaching the 
LCP is small, it 
is about 36 
times larger 
than for High 
OH (see Fig. 3) 
(b-d)
Percentage of 
SO2 loss due to 
aqueous 
reaction with 
H2O2 (b), O3 (c), 
and gas-phase 
reaction with 
OH (d). Most 
SO2 (on 
average 74%) is 
destroyed via 
the reaction with 
H2O2. Reaction 
with O3 seems 
to be less 
important in 
destroying SO2

(as expected). 
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Figure 3: As for 
Figure 2 but for 
High OH (OH 
global scenario) 
→ Overall less 
SO2 reaches the 
LCP than for 
low OH; all 
trajectories 
deliver less than 
2% of initial 
SO2.
The reaction 
with H2O2 is the 
dominant 
reaction in 
depleting SO2

along the 
trajectories; the 
dominance is 
more 
pronounced 
than in the low 
OH case. The 
histograms are 
narrower than 
for the low OH
scenario; gas-
phase reaction 
of SO2 and OH 
deplete less 
SO2 than in the 
low OH
scenario. 
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Figure 1: Trop. OH columns from GEOS-Chem (1-15 October 2009). 
Two scenarios considered:

(i) OH zonal mean → OH ‘global’ scenario
(ii) OH mean from 125°E-140°E → OH ‘hole’ scenario

� studies of the flux of species often based on zonal mean OH 
concentrations (e.g. case (i))4

� recent study by Rex at al.5 showed existence of pronounced 
minimum in OH-concentrations above the West Pacific
→ impact of such variability in trop. OH concentrations on 

stratospheric SO2 flux analysed here
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Motivation
� 4-7%/year increase in strat. sulfate aerosols (1990-2009)1

� no volcanoes → transport of carbonyl sulfide (COS) and sulfur
dioxide (SO2) via tropical tropopause layer (TTL) maintains
aerosol layer, however, relative contributions remain uncertain

� study by Marandino et al. 2013 suggests that dimethylsulfide
(DMS) entry into strat. more important than previously thought

� processes governing transport of S to strat. are poorly quantified
� high uncertainty in the dominant global sources and sinks of

COS → uncertainties in global COS budgets & the drivers of
long-term trends

COS retrievals from FTIR measurements
� known uncertainties in global COS budget, COS sources & sinks

� measurement sites: Lauder, New Zealand (1997-present),
Wollongong, Australia (1996-present), Arrival Heights, Antarctica
(1997-present)

� one micro-window: 2047.81 - 2048.21 cm-1

� SFIT4 retrieval algorithm to derive total & partial COS columns

� determine long-term trend & seasonal variation in COS columns

� work in progress…

Sulfur transport trajectory study
� ATLAS2 model → impact of trop. OH on stratopheric SO2 flux

� back trajectories → start at 400K, 2°x 2° long/lat grid, 30°N to 
30°S, 120 days starting on 31 January 2010, must go to 800 hPa

� troposphere → vertical winds used for vertical motion

� upper TTL & strat.→ radiative heating rates for vertical motion

� winds & heating rates → ECMWF reanalysis data; ERA-interim  

� box model → run from 800 hPa to LCP; gas-phase & aqueous-
phase reactions considered:

SO2+OH+M → HSO3 + M (dominant gas phase reaction) (R1)

(R2)

(R3)

(R4)HSO�
�
�O

�
↔ H

�
+SO�

��
�O�

HSO�
�
� H2O2 ↔ H

�
+SO�

��
� H�O

SO� ∙ 	H�O ↔ H
�
+HSO�

�

Chemistry & initialization

� gas to aqueous conversion → Henry’s law

� kinetic reaction rates & equilibrium const. 
Feichter et al.6

� HSO3 → reacts with oxygen to produce SO3

� SO3 → with water vapour, converted rapidly to 
sulfuric acid (H2SO4)

� H2SO4 → forming new aerosol or adding to 
existing ones 

� initial long/lat SO2 field at 800 hPa from 
CESM1.1 CAM-Chem7

� lat/altitude OH and O3 fields from GEOS-Chem
tropospheric Chemistry Transport Model3; for 
purely technical reasons H2O2 from TOMCAT, 
scaled to match OH/O3 from GEOS-Chem

Preliminary findings
� high OH scenarios → majority of air masses 

transport less than 0.2 % of initial SO2 to 
stratosphere

� OH hole → ~8% of air masses deliver >2% of 
initial SO2; 36 times more SO2 reaches 
stratosphere → if there is a role for SO2
emissions for stratospheric sulfur balance, then 
this role is likely very sensitive to OH field (& 
related H2O2) & to the existence of OH 
minimum above West Pacific

� reaction with H2O2 is dominant in converting 
SO2 to sulfate; O3 plays a less important role
→ important to get modelled H2O2 correct 
(prerequisite for that are correct OH & O3)


