How is chlorine activation affected by the composition of Polar Stratospheric Clouds and background aerosol particles?

ALFRED-WEGENER-INSTITUT
HELMHOLTZ-ZENTRUM FÜR POLARUND MEERESFORSCHUNG

Ingo Wohltmann¹, Ralph Lehmann¹, Markus Rex¹, Tobias Wegner², Rolf Müller², Gloria L. Manney³, Michelle L. Santee⁴

¹Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

²Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, Germany

³NorthWest Research Associates, Inc., Socorro, New Mexico, USA

⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Motivation

- ► Explore impact of known uncertainties in heterogeneous processes on ozone depletion and chlorine activation
- ► Use ATLAS CTM and sensitivity runs for every uncertainty
- ► Focus on activation on solid NAT particles versus activation on liquid ternary or binary solutions (see Drdla and Müller, 2012)...
- ...and on reaction rate coefficients

ATLAS Model

- Lagrangian model
- ► Stratospheric chemistry: 180+ reactions, 47 species
- ▶ Rate constants from JPL 2011
- $ightharpoonup Cl_2O_2$ photolysis from Burkholder et al. (1990)
- ► Heterogenous chemistry: Reactions on NAT, ice, STS
- ► Particle-based denitrification model (DLAPSE):
- Nucleation, sedimentation, growth of "NAT rocks"

Heterogeneous chemistry module

- ▶ STS: Carslaw et al. (1995), form up to ice frost point
- ► NAT, ice: Form instantly in equilibrium if given supersaturation is exceeded
- ► NAT, ice: Predefined number density, uniform particle radius (calculated)
- ▶ NAT forms from STS

Reaction	STS	NAT	lce
$ClONO_2 + H_2O$	HR/Shi	HR/AM	0.3
$ClONO_2 + HCl$	HR/Shi	HR/AM	0.3
$N_2O_5 + H2O$	HR	0.0006	0.02
$N_2O_5 + HCl$	-	0.003	0.03
HOCl + HCl	HR/Shi	0.1	0.2

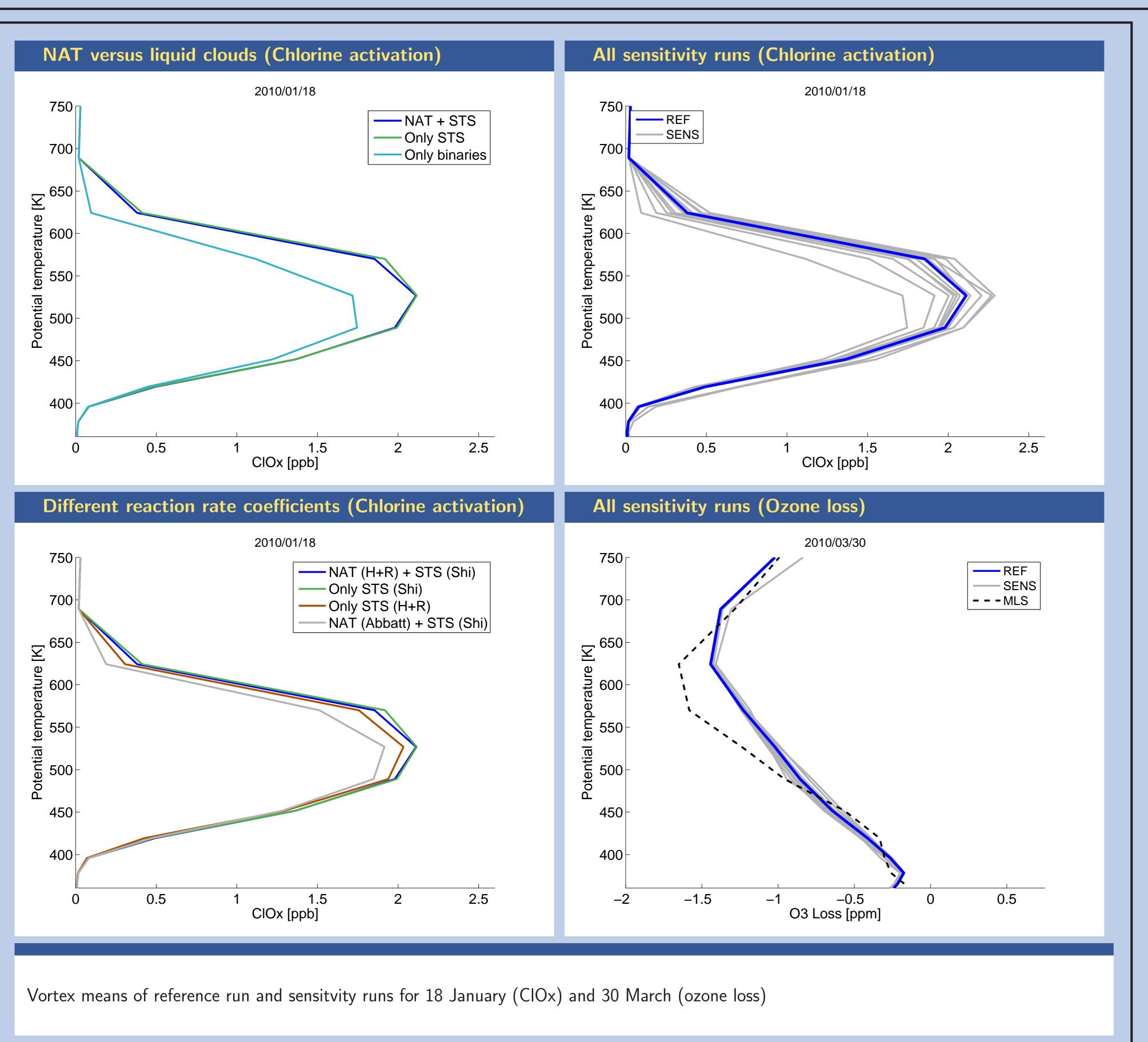
Model setup

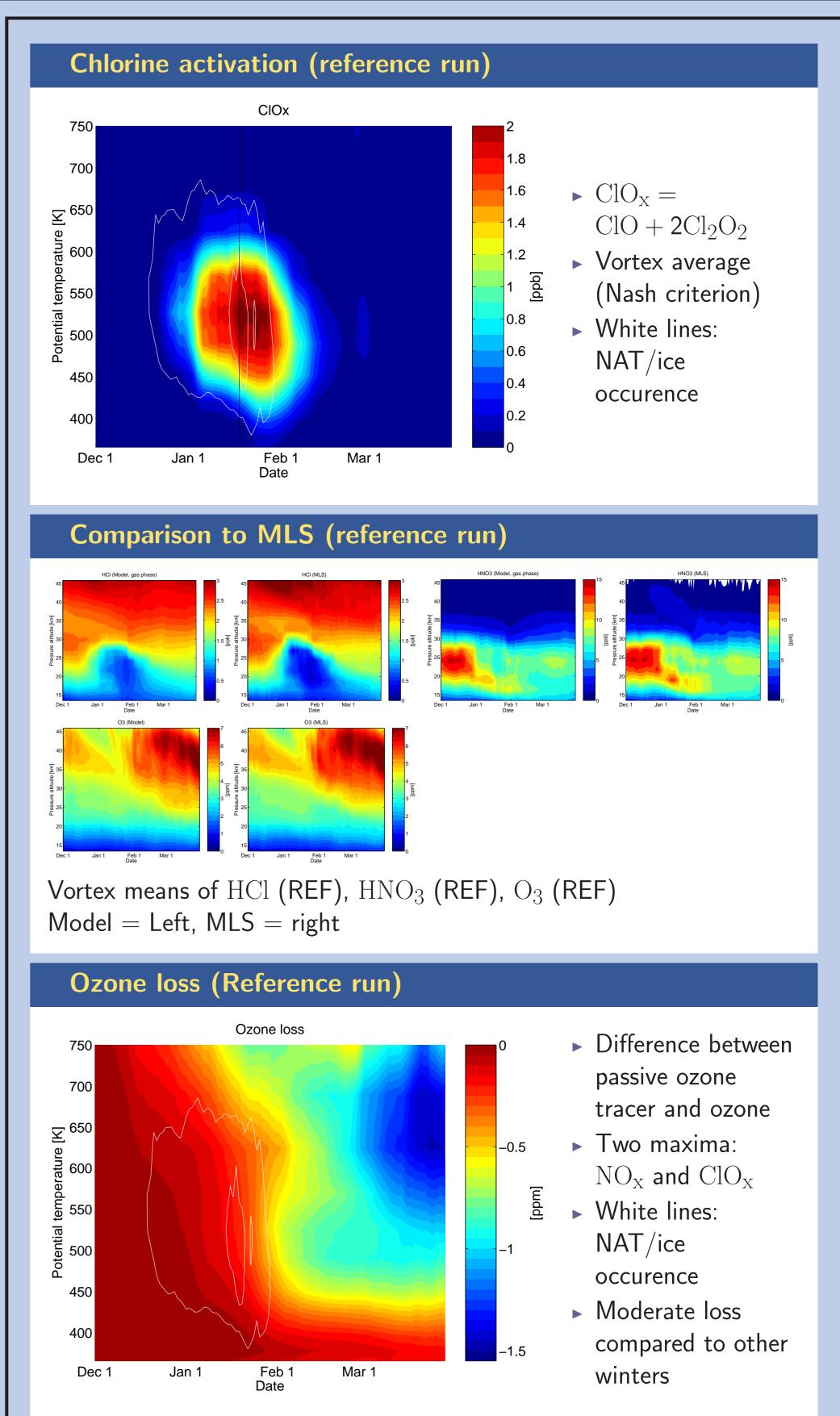
- ► ERA Interim
- ▶ Resolution: 150 km
- ▶ Vertical: Potential temperature and heating rates
- ▶ December 2009–March 2010

Reference run

- ► NAT (Hanson+Ravishankara) and STS (Shi et al.)
- ► Supersaturation HNO₃ over NAT of 10 (3 K supercooling)
- ► Number density STS: 10 cm⁻³
- ► Number density NAT: 0.1 cm⁻³
- ▶ Number density ice: 0.01 cm^{-3}
- ▶ Nucleation rate NAT rocks: $7.8 \cdot 10^{-6}$ particles per h and cm³

Sensitivity runs


ONLY-LIQ-BIN


REF Reference run: NAT and STS
ONLY-LIQ-TER Activation only on STS (no NAT)
ONLY-LIQ-TER-HR As above, but with rates of Hanson and Ravishankara (1994) for STS

Activation only on binaries (no uptake of HNO3 allowed)

ABBATT Rates of Abbatt and Molina (1992) for NAT

...and 7 more (not discussed here)

Conclusions (NAT versus liquid)

- ► Activation on liquid aerosol alone sufficient to explain observed magnitude and morphology of ozone depletion and chlorine activation
- Even true for binary aerosols (no uptake of HNO3 from gas-phase allowed)
- ► Current estimates of NAT number density and supersaturation imply small role of NAT, at least in 2009/2010 winter
- No final decision possible from our model runs which percentage of activation occurs on STS or NAT (relatively similar results, model bias to observations)

Conclusions (Reaction rates)

- ► Change between rates of Shi et al. or Hanson and Ravishankara for liquid aerosols has only minor impact
- ► Same is true for change between rates of Abbatt and Molina or Hanson and Ravishankara for NAT...
- but that is caused by the small role of NAT in the model run.
 More NAT clouds would cause large differences.

References

- ▶ Poster based on Wohltmann et al. (2013), Uncertainties in modelling heterogeneous chemistry and Arctic ozone depletion in the winter 2009/2010, Atmos. Chem. Phys., 13, 3909-3929.
- ▶ Drdla and Müller (2012), Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere, Ann. Geophys., 30, 1055-1073.

Conclusions (general)

- Even (unrealistically) large changes in the underlying assumptions have only a small impact on the modeled ozone loss ($\approx\!10\%$)
- General morphology of all species is reproduced well
- Runs slightly overestimate HCl and underestimate ClOx and ozone depletion compared to MLS, Geophysica and ozone sondes