#### Radiative and Chemical Impacts of Stratospheric Aerosols from Volcanic Eruptions as Simulated in the NASA GEOS-5 Earth System Model

Peter Colarco, Valentina Aquila\*, Luke Oman, Paul Newman NASA Goddard Space Flight Center, Greenbelt, MD USA \*also with GESTAR/Johns Hopkins University

# Objective

Understand the perturbations to stratospheric dynamics and chemistry caused by the 1991 Mt. Pinatubo and Cerro Hudson volcanic eruptions

Evaluate GEOS-5 performance in simulating the stratospheric aerosol perturbation, and its radiative and chemical impacts

Goal is to have a model that supports a range of relevant chemistry-climate modeling applications (e.g., volcanic perturbations, geoengineering), as well as the interpretation of new stratospheric aerosol observations (e.g., OMPS-LP)

## GEOS-5

GEOS-5 is the Goddard Earth Observing System model

GEOSCCM version of GEOS-5 includes aerosol and chemistry mechanisms

 Applications to ozone and stratospheric transport assessments, chemistry-climate interactions studies

We have recently extended GEOSCCM to account for the chemical and radiative effects of stratospheric aerosols

- Added OCS chemistry to produce natural background aerosols
- Two aerosol mechanisms: bulk (GOCART) and sectional (CARMA)
- Aerosols are radiatively coupled and provide input surface area to the stratospheric chemistry mechanism

## **AOD Time Series**



- Simulation details:
  - OCS produced sulfate + volcanic sulfate inputs only: Pinatubo main eruption (June 15) is 15 Tg SO<sub>2</sub> + 4 Tg sulfate at 18 22 km; Cerro Hudson (August 15) is 2.7 Tg SO<sub>2</sub> at 12.5 18 km
  - 72 vertical hybrid-sigma levels from surface to ~80 km
  - c48 horizontal resolution (cubed sphere, ~2° x 2.5°), 1991 1993
- AVHRR zonal mean time series with prior year AOD subtracted (i.e., attempt to construct stratospheric only AOD)
- Simulation results are shown for CARMA based model runs

#### Zonal Mean Extinction Profile



- Model picks up southward transport of Pinatubo plume, but not the northward transport
- Simulation including Cerro Hudson has 10 15 km altitude low latitude aerosol extinction as in the observations, not present in simulations without

## Effective Radius



## Ozone Impacts of Cerro Hudson



Stratospheric column O<sub>3</sub> averaged poleward of 30° S

### Ozone Impacts of Cerro Hudson



Stratospheric column O<sub>3</sub> averaged poleward of 30° S

#### Zonal Mean Ozone Difference



### Zonal Mean Temperature Difference



#### Zonal Mean Wind Difference



#### Zonal Mean Wind Difference



### Dynamical Temperature Tendency



### Radiation Temperature Tendency

October 1991 Temperature Tendencies due to Radiation: with - without Cerro Hudson





## Role for Aerosols



#### Zonal Mean Ozone Difference



# Conclusions

- GEOS-5 simulation results show reasonable performance in simulating Mt. Pinatubo and Cerro Hudson volcanic aerosols
- We find less ozone in austral spring (October) 1991 in the simulations that include Cerro Hudson
- Simulations suggest significant depletion of ozone at 13 km due to heterogeneous chemistry occurring on Cerro Hudson aerosols, somewhat compensated by dynamical enhancement of ozone at 25 km
- We need to perform more simulations to assess the significance of our results