

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

A New Generation of Balloon Borne Aerosol Sizing Instruments to Extend the Mid-latitude Stratospheric Aerosol Record.

Lars Kalnajs¹, Terry Deshler^{1,2}

¹Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, ²Department of Atmospheric Science, University of Wyoming

Introduction

- In situ measurements of stratospheric aerosol have been made from Laramie Wyoming, since 1971
- There have been both personnel and instrument changes made over the past 45 years
- The current instrumentation and PI are nearing retirement
- Proposed project to design new instrumentation and move measurements to Boulder, Colorado, 1° South of Laramie Wyoming
- New instrumentation allow the continuation of the measurement and new opportunities.

Measurement Heritage

Instrument	Time	Radius (µm)	Channels	Flow Rate (I/m)	Sample Rate Hz	Light Source	Scattering Angle
Dust	1971-1992	0.15 – 0.25/0.30	2-4	1	0.1	White Light	25
WPC	1989- 2010	0.15 – 2/10	8-12	10	0.1	White Light	40
PMI-UW	2008 – 2016	0.075 – 4/15	8	10/30	0.5	He-Ne Laser	90
LPC	2016-?	0.15 – 12.5	8 - ?	30	1	Diode Laser	35

Research Highlight

Next Generation Optical Particle Counter

Condensation Nuclei Counter

CN Counter:
Grows all particles
with r > 0.006 µm
up to particles with
r > 0.25 µm which
can be counted
with a single
channel OPC.

Condensation Region Walls chilled to 0°C

LED

Saturation Region Walls Coated with Ethylene Glycol Heated to 35°C

Measurement Challenges

Instrument Calibration

Instrument Advances

- Reduce instrument weight from ~12 Kg to ~3Kg
- Reduce balloon volume from 4000m³ plastic balloon to 1000m³ rubber balloon
- Lifting gas requirements decrease by factor of 4
- Launch cost decreases by factor of 10
- Digital pulse by pulse height analysis possibility to digitize and record every aerosol particle
- Customizable number of size bins
- Instrument can be (re)calibrated after the fact

Light-Weight Instrumentation

Photos: U.Wyoming / NOAA ESRL SSIRC Meeting, Lars Kalnajs

Rapid Deployment Capability

- Use Iridium Satellite SMS messages for telemetry
 no ground station or tracking required
- Cost of payload < \$10K / each.
- 'Suitcase' launches with no telemetry and no recovery
- Dynamic range suitable for background and volcanic measurements.
- Suitable for long duration measurements will be deployed on long duration lower stratospheric balloon campaign – Stratéole 2.

