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Motivation 

Following Pinatubo, enhanced eddy heat fluxes indicate a strengthened the Brewer-
Dobson circulation (Fueglistaler, 2012; Poberaj et al., 2011). 



Pinatubo 

Following Pinatubo, estimates using thermodynamic variables show weakened 
upwelling, while estimates using circulation show strengthened upwelling.  

(Abalos et al. 2015) 

Motivation 



Newtonian Cooling approximation: Diabatic heating (Q) relaxes the temperature to 
a prescribed equilibrium (Te) on a timescale (τ): 
 
 
 
 
 
[Temperature T, TEM meridional and vertical velocities (v*,w*), Earth radius a, latitude ϕ, stratification S, diabatic heating Q] 

 
Assuming steady state and negligible meridional fluxes, Qaerosol is balanced by 
changes in upwelling and temperature: 

Fractional temperature response Fractional upwelling response 

Theory:  Newtonian Cool ing 
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Volcanic aerosol forcing 
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High fractional temperature response 

Theory:  Newtonian Cool ing 
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High fractional upwelling response 

Theory:  Newtonian Cool ing 



Aerosol datasets:  
1. Stenchikov et al. (1998,2006)  
2. ETH-4λ (Arfeuille et al., 2013)  

General circulation models: 
1. SOCOL 
2. GFDL AM3 

Heating rate Heating rate without aerosol Aerosol heating rate 
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Methodology:  Heating rates 
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GFDL Dry Dynamical Core 
 

Pinatubo heating rates 

Rectangular heating rates 
10º 60º 90º 30º 45º 

Setup: Held-Suarez (1994) 
40 vertical levels 

1500 days, ignore first 500 
Spectral T42 



Resul ts :  Temperature  response 

∆TE (dashed)                 ∆T (solid) 
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Fractional temperature response 

Fractional temperature response Fractional upwelling response 

Fr a c t i o n a l  u p w e l l i n g  r e s p o n s e  v s .  f r a c t i o n a l  t e m p e r a t u r e  
r e s p o n s e  i n  G F D L  D r y  D y n a m i c a l  C o r e  



W h at  fac to r s  a f fec t  f rac t i on a l  up we l l i n g  resp on se?  

From non-dimensionalized quasi-geostrophic equations assuming steady-state, 
Newtonian cooling (τ) and linear momentum damping (κ): 

High fractional temperature response 

 

High fractional upwelling response 

N2 = squared buoyancy frequency 
H/L = aspect ratio of heating 
f = Coriolis parameter 



Upwel l ing  vs .  heat ing  width  
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upwelling 
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(Robock, 2000) 

He ight  gradient  rev is i ted 

High fractional temperature response 
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Aerosol heating increases tropical residual 
upwelling, decreasing Equator-Pole temperature 
gradient, decreasing height gradient, and 
making jet stream (polar vortex) weaker. 

North Pole Tropics 

High fractional upwelling response 

Weaker vortex does what…. ? 



P re l i m i n a r y  Res u l t s :  Ro l e  o f  da mp i n g  

Based on QG scaling, we expect that fractional change in upwelling  
should increase with τ, but instead we find that it decreases. 

Fractional change in upwelling vs. height 



Future Work 

• Use fully-coupled models and reanalysis data to characterize the fractional 
upwelling response to Mt. Pinatubo. 
 
• Explore the role of damping in determining the fractional upwelling response. 
 
• Explore the role of seasonality in the fractional upwelling response. 



Summary 
• Two GCMs that use the same aerosol datasets but 
independent processing of optical properties can 
produce estimates of volcanic aerosol heating rates 
that differ by up to 0.2 K/day, a factor of two. 

• Based on QG theory and idealized modeling 
experiments, narrow heating induces a high 
fractional upwelling response and wide heating 
induces a high fractional temperature response. 

• Tropical heating perturbations in the stratosphere, 
like those following major volcanic eruptions such as 
Mt. Pinatubo, lead to a combination of increased 
temperature and increased tropical upwelling.  
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Extra  Resul ts :  Longwave & shor twave 

When derived using GFDL 
AM3, ETH-4L (Arfeuille et al., 
2013) is found to have 
slightly larger aerosol 
heating rates, with a larger 
contribution from shortwave 
aerosol and smaller 
contribution from longwave 
compared to Stenchikov et 
al. (1998, 2006). 


