

SO₂ Laser Induced Fluorescence (LIF) Spectroscopy

WB-57F LIF Instrument

- Custom fiber-laser produces 2-3 mW at 216.9 nm.
- PFA / PEEK sampling system with minimal surface area – no evidence of inlet artifacts.
- In-situ calibration performed hourly using SO₂ standard addition.
- In-situ background check performed every 15 minutes using zero air addition.

Typical Performance

- Response time ~ 0.1 s
- Signal: 5 cps / ppt SO₂
- Background: 400 cps (scatter)
- $1-\sigma$ noise = 4 ppt at 1Hz
- Linear to ~ 8 ppb
- ± (0.9 ppt + 16%) uncertainty

SO₂ inlet

Volcano-Plume Investigation Readiness Gas-Phase and Aerosol Sulfur (VIRGAS)

October 2015, NASA WB-57F, Houston and Harlingen, TX

- Demonstrate Payload
- Test models & satellites
- Quantify SO₂ background at and above tropical tropopause

VIRGAS observations

GMAO SO₂ Forecast model used to target areas with potentially elevated SO₂ events in the UT.

Tropical average SO₂

LIF measured Zonal Median SO₂ 110°W – 80°W

Using 10 – 25 °N for Tropical analysis

Höpfner et al., ACP, 2013, 2015

Conclusions

- LIF successfully deployed in UT/LS on aircraft to quantify background SO₂.
- Measurements support generally low typical values at the tropopause (10 ppt) and agree reasonably well with ACE retrievals and WACCM and GMAO models.
- 5 10 pptv average tropical tropopause mixing ratio would support a relatively small source of S in terms of the background stratospheric budget: 8.5 – 17 Gg S yr⁻¹ by scaling Sheng et al.

SO₂ Laser Induced Fluorescence (LIF) Spectroscopy

LIF: Observation of fluorescence following laser electronic excitation.

Signal ∝ absorption × fluorescence yield

LIF considerations:

- Fluorescence quantum yield from B
 state is near zero.
- In C band at wavelengths less than 220 nm, fluorescence quantum yield rapidly drops towards zero.
- Tunable lasers are not easy to come by in this region.
- We are using 216.9 nm.
 Signal might be ~ 2x higher if pumping at 220.6 nm.

WB-57F LIF Instrument

Fiber laser scheme

- Pulsed tunable diode laser at 1085.4 nm is amplified ~ 10⁶ using rare-earth (Yb³⁺) doped fibers pumped with diode lasers at 976 nm.*
- Fifth harmonic at 216.9 nm is generated with ~ 1% efficiency using 3 nonlinear crystals.
- 20 W power consumption (excluding computer). Passively cooled.
- Relatively stable in flight environment. We operated for 8 flights with no need to make adjustments.
- Typical output of 2-3 mW @ 216.9
 nm

^{*} Collaboration with USA National Institute of Standards and Technology